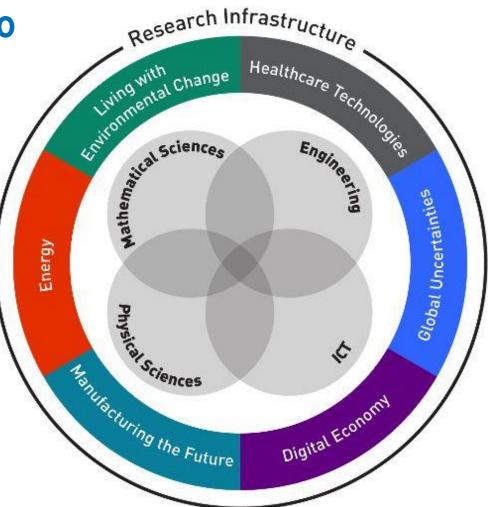

ENGINEERING AND PHYSICAL SCIENCES RESEARCH COUNCIL

EPSRC Update and Liquid Crystals Discussion



Simon Crook

Overview of EPSRC - where we fit in Government

Our Portfolio

EPSRC & Government - Budget Allocations 2015-16

- Commissioning letter sent to CEO 17 April 2013
- Impact of +10% and -10% and plans for flat cash allocation
- Council no change in Strategic Plan or current Delivery Plan
- Relationship with great Eight Technologies and Industrial Strategies
- Outcome by July 2013 actually decided Early 2014 Flat cash
- Extra £270M announced for Quantum Technologies over 5years – to include National Network of Hubs
- £85M for capital equipment spent early last year, other large capital bids likely and have happened

Resource Funding, showing Impact of GDP Inflation

OFFICIAL - SENSITIVE

EPSRC - The Research Council for Growth Aerospace, defence Chemicals, and marine Pharmaceuticals and Biotechnology **Greater understanding of corrosion** Low-cost DNA sequencing to design more efficient and Construction, longer-lasting jet engines environment and water No immediate relevance to industrial sectors Other (Food and Drink, retail, sport,_ etc.) Financial services IT and Communications Creative Industries 3D-printing buildings **Electronics** Energy_ (Fusion) Energy Manufacturing Transport

Hearing aid mobile app > 70% of EPSRC's £3.7bn portfolio of research and PhD training has clear relevance to key UK industrial sectors

Wave-energy converter

Recent Government Developments

THE BIS INDUSTRIAL SECTOR STRATEGIES

Early 2013

Aerospace

Nuclear

Offshore wind

Oil and Gas

Spring 2013

Automotive

Information Economy

Education

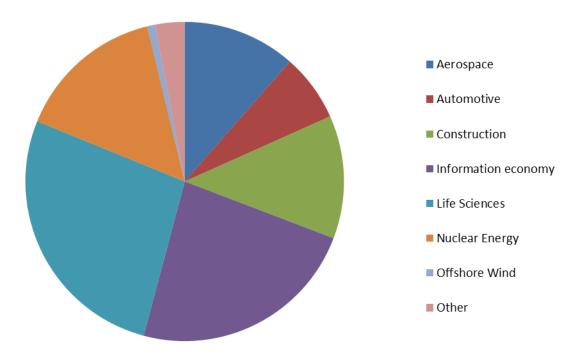
Agri-tech

Summer 2013

Construction

Professional Business Services

Life Science Life Scie Strategy Dec 2011 Strategy



Life Science 1 Strategy one-year-on Dec 2012

EPSRC - The Research Council for Growth

EPSRC Portfolio of Direct Relevance to BIS Sectors

Over 40% of our portfolio of £3.7Bn is of direct relevance to the 11 BIS Industrial Sector Strategies

EP	SRC Centres for D	octoral Training	priority areas ma	pped to the	Eight Great	Technologies	
Advanced Materials (26)	Big Data (23)	Energy (19)	Robotics & Autonomous Systems (13)	Regenerative Medicine (10)	Synthetic Biology (8)	Agri-Science (4)	Space (2)
Engineering Sciences	Digital Mantity	Englineering Sciences	Autonomous Systems and Pobotics	Engineering for Life and Health	Engineering for Life and Health	Water	Integrative Technologies
Materials Technologies	Digitally Connected Citizens	Bide neingy	Date to Knowledge	Medical Imaging	Process Engineering	Mathematics of Weather, Oceans and Climate	Engineering Sciences
Process Engineering	New Digital Ventures	Cerbon Cepture and Storage and Clean Possil Energy	High Performance Embedded and Distrib-	Regenerative Medicine	Synthetic Biology	Nove (and Efficient Chemics)	
Structural Integrity & materials behaviour	Autonomous Systems and Robotús	End Use Energy Demond in Buildings, Transport and Industry	uted Systems KT for Manufacturing	The repeutics and Nanomedi-	Complex Menufactured Products	Synthesis Engineering Sciences	
Sustainable Built Environments	National Infrastructure Systems	Energy Storage	Integrative Technologies	New Mathematics in Biology	New Mathematics in Biology		
Healthcare Device Innovation	Digital Healthcare	Hydrogen and Fuel Cells	Next Generation Interaction Technolo-	and Medicine	end Medicine New Physical Sciences for	.	
The regentals and Nano medicine	Medical Imaging	Nuclear	B is:	Functional Materials	Biology and Healthcare	<u> </u>	
Integrative Technologies	Data to Knowledge	Power Networks	Underpinning Communication and	Materials Characterisation	Nove (and Efficient Chemics)	I P	SRC
Complex Manufactured Products	High Penformance Embedded and Distributed Systems	2 miles	Computer Science Training Future Industrial Systems	New Physical Sciences for	Synthesis Engineering Sciences	······	
Distributed Menufacturing	ICT for Manufacturing	Wind and Marine Energy		Biology and Healthcare Polymer, Soft Matter &		Pioneeri	ng research
Future Industrial Systems	Next Generation Interaction Technolo- gies	National Infrastructure Systems	Innovetive Production Processes Methemetics of Highly Connected, Real-	Colloid Science Engineering Sciences		and skills	
Innovative Production Processes	Underpinning Communication and Computer Science Training	Power Electronics	World Systems Measurement and Sensing	sufficestud zoeurez			
Lightweight Systems	Distributed Manufacturing	Sustainable Built Environments	Engineering Sciences			1	
Sustainable Use of Materials	Core Mathematics and its Interfaces	High Performance Embedded and Distributed Systems	Healthcare Device Innovation		Number of	Number of	Total value of
Industrially-Focused Mathematical Modelling	Industrially Focused Mathematical Modelling	Mathematics of Highly Connected, Rea PWorld Systems		Total value of	11.	supporting	non-EPSRC
Computational & Theoretical Physical Sciences	Mathematics of Highly Connected, Real- World Systems	Functions I Materials	Available	EPSRC Fundin	Ч П .	letters from	contributions
Condensed Matter Physics	Mathematics of Weather, Oceans and Climate	Photonic Materials, Metamaterials & Plasmonics	funding:	requested:	outlines:	partners:	to Centres:
Functions I Materials	New Mathematics in Biology and Medicine	Plasma & High Energy Density Physics	£350M	>£1.6bn	>1500	>2500	>£1bn
Materials Characterisation	S to tố tús	Polymer, Soft Matter & Colloid Sci- ence					
Measure meint and Sensing	Computational & Theoretical Physical Sciences		LAGUAR ROVER	- 100 O	irdnance		D. C.
New Physical Sciences for Biology and Healthcare	Condensed Matter Physics		JAGUAR KOVER	_0 <u>S</u> S	ordnance curvey"	Network Rail	P&G
Nove Lend Efficient Chemical Synthesis	Town rds Quantum Technologies			(QinetiQ	1	TAT
Photonic Materials, Metamaterials &	Engineering Sciences	U NOVARTIS	THALES				

Plas monics

Plasma & High Energy Density Physics

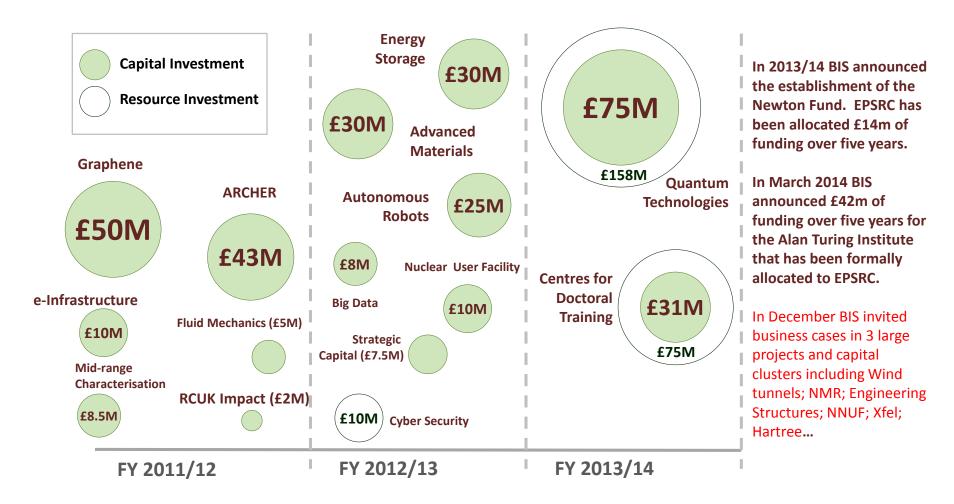
Polymer, Soft Matter & Colloid Science

Sustainable Chemistry

Microsoft ...

ARUP

Rolls-Royce*



Examples of Industrial partners in 2013 CDT competition

Additional EPSRC budget allocations since 2011

The Evolving University Ecosystem

- Cost recovery Matched Funding
- Tuition fees
- The importance of 'place'
- Shared approaches to ensure efficient use of resources
- Open access
- Shrinking public expenditure

Changing Funding Environment for Materials

Advanced Materials

New Manchester materials centre. Further interest from government in materials in general. In discussion with JSPS for next call with Japan

Materials Grand Challenges

We are looking to announce a number of materials grand challenges, Nigel Birch is leading this for EPSRC

Quantum Technologies

Effectively a new research Theme funded within EPSRC, how do we embed this into full research plans longer term?

Balance of Research!

New funding is great but.....

Liquid Crystal Funding Trends (treat with care!)

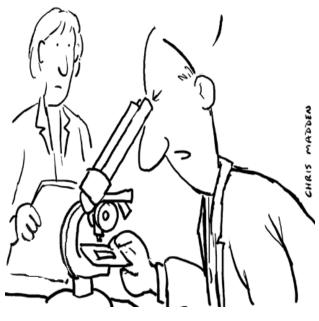
Overview

Obtained data for the last 11 years using keywords in titles and abstracts: mesophase, liquid crystal, blue phase, nematic, smectic.

978 applications. 306 funded, 672 rejected (31.3%) 718 were standard/responsive, 505 rejected (29.7%)

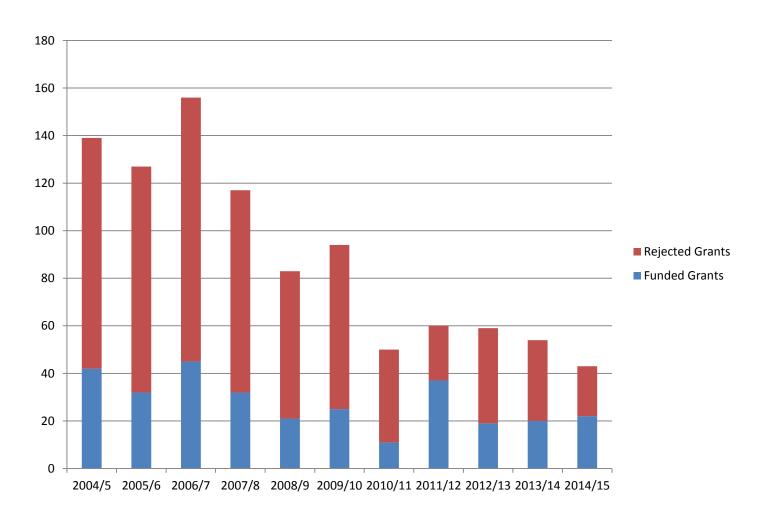
First Grants: 69 applications, 25 awarded (36.2%)

Platform Grants: 7 applications,5 awarded

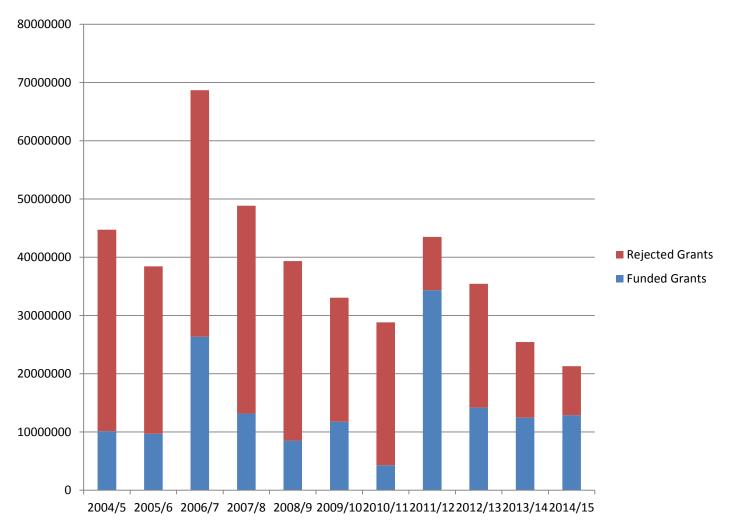

Programme Grants: Involved in 4

Advanced Fellows: 21 applications, none awarded

Senior Fellows: 5 applications, 2 awarded **Career Fellows**: 19 applications, 6 awarded

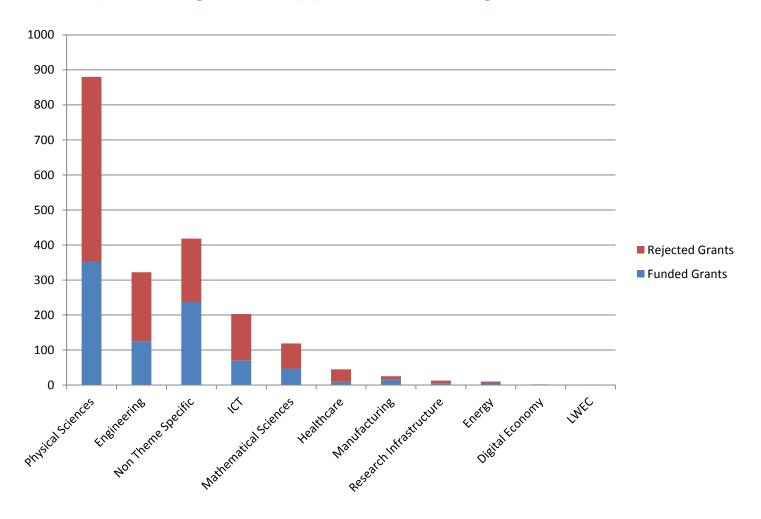

Leadership Fellows: 4 applications, 3 awarded

IF THIS EVIDENCE IS CORRECT IT'LL ROCK THE VERY FOUNDATIONS OF OUR RESEARCH GRANT APPLICATION



Liquid Crystal Applications by Number

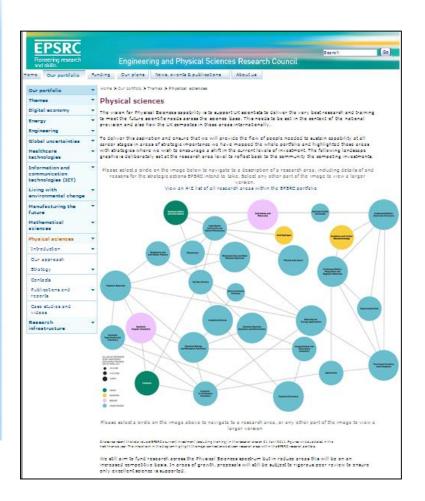
Liquid Crystal Applications by Funds

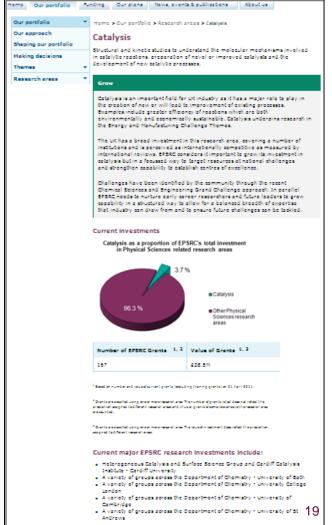


Standard - Liquid Crystal Applications 2004-2015

Liquid Crystal Applications by Theme 2004-2015

Demonstrating the Added Value of EPS


- Elections coming up, new CSR bids, we have to plan as normal!
- What are the big new research areas that Physical Sciences will generate?
- How can we better make the case for the importance of PS underpinning the rest of science and industry
- How can liquid crystals add to the message for the next government? New technologies, impact, new science.....



EPSRC portfolio

Overview and analysis of entire EPSRC portfolio

Available at: http://www.epsrc.ac.uk/ourportfolio/Pages/default.aspx

QUESTIONS

Key data from the seven UK Research Councils in one location.

Search for and analyse information on publicly funded UK research. Please provide feedback on your experience to gateway@rcuk.ac.uk so we can improve and develop Gateway to Research when the final live system is launched at the end of 2013.

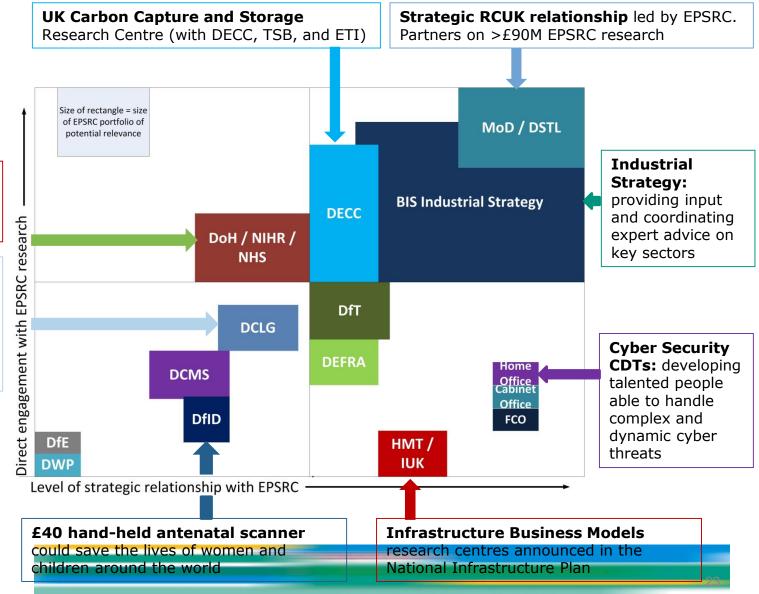
Please enter a search term...

Search

What Is a Research Council?

TECHNOLOGY BREAKTHROUGH: THE CORDLESS TOASTER

- A non departmental government body holding a royal charter to Fund basic, strategic and applied research.
- Funds come from the public purse.
- Scope is from studentship up to large scale scientific facilities.
- Peer Review is used in grant decision making.
- EPSRC has a budget of around £800M



EPSRC – Relationships with Government Departments (it's not just companies!)

Digital stethoscope to help GPs spot the first signs of heart

Helping 'map the underworld' of infrastructure without digging up roads more than 60 partners including local authorities

disease

